137 research outputs found

    Dynamic isoperimetry and the geometry of Lagrangian coherent structures

    Full text link
    The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume. The present work introduces \emph{dynamic} isoperimetric problems; the study of sets with small boundary size relative to volume \emph{as they are evolved by a general dynamical system}. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer-Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplacian operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian. Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplacian operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method (Froyland, 2013) for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach (Froyland, 2013), and adds a formal geometric interpretation

    Optimal mixing enhancement

    Get PDF
    We introduce a general-purpose method for optimising the mixing rate of advective fluid flows. An existing velocity field is perturbed in a C1C^1 neighborhood to maximize the mixing rate for flows generated by velocity fields in this neighborhood. Our numerical approach is based on the infinitesimal generator of the flow and is solved by standard linear programming methods. The perturbed flow may be easily constrained to preserve the same steady state distribution as the original flow, and various natural geometric constraints can also be simply applied. The same technique can also be used to optimize the mixing rate of advection-diffusion flow models by manipulating the drift term in a small neighborhood

    Coherent sets for nonautonomous dynamical systems

    Full text link
    We describe a mathematical formalism and numerical algorithms for identifying and tracking slowly mixing objects in nonautonomous dynamical systems. In the autonomous setting, such objects are variously known as almost-invariant sets, metastable sets, persistent patterns, or strange eigenmodes, and have proved to be important in a variety of applications. In this current work, we explain how to extend existing autonomous approaches to the nonautonomous setting. We call the new time-dependent slowly mixing objects coherent sets as they represent regions of phase space that disperse very slowly and remain coherent. The new methods are illustrated via detailed examples in both discrete and continuous time

    A semi-invertible Oseledets Theorem with applications to transfer operator cocycles

    Full text link
    Oseledets' celebrated Multiplicative Ergodic Theorem (MET) is concerned with the exponential growth rates of vectors under the action of a linear cocycle on R^d. When the linear actions are invertible, the MET guarantees an almost-everywhere pointwise splitting of R^d into subspaces of distinct exponential growth rates (called Lyapunov exponents). When the linear actions are non-invertible, Oseledets' MET only yields the existence of a filtration of subspaces, the elements of which contain all vectors that grow no faster than exponential rates given by the Lyapunov exponents. The authors recently demonstrated that a splitting over R^d is guaranteed even without the invertibility assumption on the linear actions. Motivated by applications of the MET to cocycles of (non-invertible) transfer operators arising from random dynamical systems, we demonstrate the existence of an Oseledets splitting for cocycles of quasi-compact non-invertible linear operators on Banach spaces.Comment: 26 page
    • …
    corecore